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Matrices associated with graphs:
Adjacency Matrix

Incidence Matrix

Laplacian Matrix

Distance Matrix, and many more.

We are dealing with a new class of matrix :

Eccentricity matrix.

Originally, the eccentricity matrix is introduced by M. Randic in ’DMAX -matrix of dominant distances
in a graph’,2013,[5] as the DMAX -matrix, which is renamed as eccentricity matrix by Wang, Lu,
Belardo and Randic in ’The anti-adjacency matrix of a graph:Eccentricity matrix’,2018,[9].
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Some applications of eccentricity matrix

On the branching pattern of molecular graphs. [6]

In terms of molecular descriptors. [9]

On the boiling point of hydrocarbons. [7]
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Basic Concepts

1 Let G be a simple connected graph with the vertex set V (G) = {v1, v2, . . . , vn} and edge set
E(G) = {e1, e2, . . . , em}.

2 The cardinality of the vertex set V (G) is called the order of the graph G.

3 The distance d(vi , vj ) between the vertices vi , vj ∈ V (G) is the length of the shortest path
between the vertices vi and vj .

4 The eccentricity e(u) of the vertex u is defined as e(u) = max{d(u, v) : v ∈ V (G)}.

5 A vertex v is said to be an eccentric vertex of the vertex u if d(u, v) = e(u).

6 The diameter diam(G), and the radius rad(G) of a graph G is the maximum and the
minimum eccentricity of all vertices of G, respectively.

7 A vertex u ∈ V (G) is said to be diametrical vertex of G if e(u) = diam(G).

8 If each vertex of G has a unique diametrical vertex, then G is called a diametrical graph.
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Definitions

Adjacency matrix
The adjacency matrix A(G) of a connected graph G with V (G) = {v1, v2, . . . , vn}, is an n × n
matrix, whose rows and columns are indexed by the vertex set of G and the entries are defined by

A(G)ij =

{
1 if vi ∼ vj ,

0 otherwise.

Distance matrix
The distance matrix of a connected graph G is D(G) = [dij ]n×n, where dij be the distance between
the vertices vi and vj in G.
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Definition

Eccentricity matrix [J Wang, M Lu, F Belardo, and M Randic [9], 2018]
The eccentricity matrix of a connected graph G is obtained from the distance matrix of G by
retaining the largest distances in each row and each column, and setting the remaining entries as
0. In other words, the eccentricity matrix ε(G) = (εuv )n×n of a connected graph G is defined as

εuv =

{
d(u, v) if d(u, v) = min{e(u), e(v)},
0 otherwise.
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Example

Consider a simple connected graph G :

Let D(G)-Distance matrix, ε(G)-Eccentricity matrix. Then

D(G) =


0 1 1 1
1 0 1 2
1 1 0 2
1 2 2 0

 ε(G) =


0 1 1 1
1 0 0 2
1 0 0 2
1 2 2 0


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Notations

1 The eigenvalues of ε(G) is called the ε-eigenvalues of G and they form the ε-spectrum of G.

2 The largest eigenvalue of ε(G) is called the ε-spectral radius and is denoted by ρ(ε(G)).

3 The ε-degree of a vertex vi ∈ V (G) is defined as ε(i) =
∑n

j=1 εij .

4 Let {ε(1), ε(2), . . . , ε(n)} be the ε-degree sequence of the graph G. Then G is said to be
ε-regular if ε(i) = k , for all i .

5 Two graphs are said to be ε-cospectral if they have the same ε-spectrum.
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Basic Concepts

Interlacing theorem
Suppose A ∈ Rn×n is symmetric. Let B ∈ Rm×m with m < n be a principal submatrix of A
(submatrix whose rows and columns are indexed by the same index set {i1, . . . , im}, for some m).
Suppose A has eigenvalues λ1 ≤ . . . ≤ λn, and B has eigenvalues β1 ≤ . . . ≤ βm. Then,
λk ≤ βk ≤ λk+n−m for k = 1, . . . ,m, and if m = n − 1, then
λ1 ≤ β1 ≤ λ2 ≤ β2 ≤ . . . ≤ βn−1 ≤ λn.

Lemma (Huiqiu Lin, Yuan Hong, Jianfeng Wang, and Jinlong Shu,[2])
The graph K1,n−1 is the unique graph, which have maximum distance spectral radius among all
graphs with diameter 2.
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Definitions

Energy of a graph
The energy ( or A-energy ) of a graph is defined as

EA(G) =
n∑

i=1

|λi |,

where λi , i = 1, 2, . . . , n are the eigenvalues of the adjacency matrix of G.

ε-energy of a graph
In a similar way, the eccentricity energy (or ε-energy ) of a graph G is defined [8] as

Eε(G) =
n∑

i=1

|ξi |,

where ξ1, ξ2, . . . , ξn are the ε-eigenvalues of G.

ε-equienergetic graphs
Two graphs are said to be ε-equienergetic if they have the same ε-energy.
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Definitions

Wiener index
The Wiener index of a graph is defined as

W (G) =
1
2

∑
u,v∈V (G)

d(u, v).

ε-Wiener index [ I Mahato, R Gurusamy, M R Kannan, and S Arockiaraj [3] ]
Similar to the Wiener index of a graph, we define the eccentric Wiener index (or ε-Wiener index)
of a connected graph G as

Wε(G) =
1
2

∑
u,v∈V (G)

εuv .
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Main results
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Conjecture for the least eigenvalue of a tree

In 2018, J Wang, M Lu, F Belardo, and M Randic [9] made the following conjecture for the least
eigenvalue of a tree.

Conjecture (J Wang, M Lu, F Belardo, and M Randic [9], 2018)
Let T be a tree on n vertices, with n ≥ 3, and let εn(T ) be the least eigenvalue of ε(T ). Then,
εn(T ) ≤ −2, and equality holds if and only if T is the star.
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Solution for the conjecture

Theorem ( I Mahato, R Gurusamy, M Rajesh Kannan, and S Arockiaraj, [4] )
Let T be a tree of order n other than P2, and let εn(T ) be the least eigenvalue of ε(T ). Then
εn(T ) ≤ −2 with equality if and only if T is the star.

Proof.
Let T be a tree on n ≥ 3 vertices, other than the star. Want to show εn(T ) < −2.

WLOG assume that P(v1, vn) be a longest path in T . Then, d(v1, vn) = k and 3 ≤ k ≤ n− 1.

e(v1) = e(vn) = k .

A =

[
0 k
k 0

]
is a 2× 2 principal submatrix of ε(T ).

The eigenvalues of A are are k ,−k , with 3 ≤ k ≤ n − 1.

Therefore, by interlacing theorem, ε(T ) must have an eigenvalue less than or equal to −3.
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Characterization of the star graph

Theorem ( I Mahato, R Gurusamy, M Rajesh Kannan, and S Arockiaraj, [3] )
Let T be a tree, other than P4, then the eccentricity matrix of T is invertible if and only if T is the
star.

Proof.
Let T be the star on n vertices. Since D(T ) = ε(T ),
det(D(T )) = det(ε(T ) = (−1)n−1(n − 1)2n−2 6= 0.

For n = 2, 3, the proof is trivial. For n = 4, P4 and K1,3 are the only trees of order 4, and the
eccentricity matrix of both the trees are invertible.

Consider n ≥ 5. Let T be a tree on n ≥ 5 vertices other than the star. We want to show that
det(ε(T )) = 0.

Let P(v1, vm) = v1v2 . . . vm−1vm be a diametrical path of length m − 1 in T .

Case(I): Let either v2 or vm−1 be adjacent to at least one pendant vertex other than v1 and
vm. WLOG, assume that vm−1 is adjacent to p pendant vertices, say, u1, u2, . . . , up . Then the
rows corresponding to the vertices u1, u2, . . . , up and vm are the same in ε(T ). Thus
det(ε(T )) = 0.
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Proof contd.

Case(II)
Let both the vertices v2 and vm−1 are not adjacent to any of the pendant vertices in G other
than v1 and vm, respectively.

If T is a tree on n ≥ 5 vertices and diam(T ) = 3, then one of the vertices v2 or vm−1 must be
adjacent to at least two pendent vertices, and the proof follows from case(I).

Let diam(T ) ≥ 4. Let us show that at least two rows of ε(T ) are linearly dependent.

Let diam(T ) = 4, and let P(v1, v5) = v1v2v3v4v5 be a diametrical path in T .

Let u1, u2, . . . , up be the vertices, other than v1 and v5, such that each ui has exactly one
common neighbour, say wi , with v3.

The vertices u1, u2, . . . , up are pendant.

The rows corresponding to the vertices w1,w2, . . . ,wp, v2, v4 and the row corresponding to
the vertex v3, in ε(T ), are linearly dependent .

Let diam(T ) ≥ 5, and let P(v1, vm) = v1v2v3 . . . vm−1vm be a diametrical path in T . Then the
rows corresponding to the vertices v2 and v3 are linearly dependent in ε(T ).

Thus det(ε(T )) = 0 in all the above cases. Therefore, if the eccentricity matrix of T is invertible,
then T is the star.

Iswar Mahato On the eccentricity matrices of graphs January 29, 2021 18 / 30



Figure
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Maximum ε-spectral radius among graphs with diameter 2

Theorem ( I Mahato, R Gurusamy, M Rajesh Kannan, and S Arockiaraj, [3] )
Among all connected graphs on n vertices with diameter 2, the star K1,n−1 is the unique graph,
which has maximum ε-spectral radius.

Proof.
Note that ρ(ε(G)) ≤ ρ(D(G)).

D(K1,n−1) = ε(K1,n−1).

ρ(D(G)) ≤ ρ(D(K1,n−1)) = (n− 2) +
√

n2 − 3n + 3, and the equality holds if and only if G is
the star. [2]

Therefore, ρ(ε(G)) ≤ ρ(D(G)) ≤ ρ(D(K1,n−1)) = ρ(ε(K1,n−1)), and the equality holds only
for the star.
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Bounds for ε-spectral radius

Theorem ( I Mahato, R Gurusamy, M Rajesh Kannan, and S Arockiaraj, [3] )
If G is a connected graph with diameter d ≥ 2, then ρ(ε(G)) ≥ d, and the equality holds if and
only if G is the diametrical graph with diameter d.

Sketch of the proof

Note that
[

0 d
d 0

]
is a 2× 2 principal submatrix of G. So by interlacing theorem, we have

ρ(ε(G)) ≥ d .

If G is a diametrical graph with diameter d , then ε(G) =

[
0 dIk

dIk 0

]
. Therefore,

ρ(ε(G)) = d .
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Proof contd.

Conversely, let ρ(ε(G)) = d . Suppose G is not a diametrical graph.

Case 1
Let G be a graph such that rad(G) 6= diam(G) = d .

Then there exists a vk ∈ V (G) with e(vk ) = k < d .

Let v1 ∈ V (G) such that e(v1) = d . Since G is a connected graph, there is a path P(v1, vk )
between the vertices v1 and vk .

The eccentricity of any vertex which is adjacent to v1 is either d or d − 1.

In P(v1, vk ), there always exists a pair of adjacent vertices u and v such that e(u) = d and
e(v) = d − 1.

Let d(u,w) = d , then d(v ,w) = d − 1.

Since e(v) = d − 1 and w is an eccentric vertex of v , the vw-th entry of ε(G) is d − 1.

C =

 0 0 d
0 0 d − 1
d d − 1 0

 is a principal submatrix of ε(G), corresponding to the vertices

u, v and w .

Since ρ(C) =
√

(d − 1)2 + d2, by interlacing theorem, we have
ρ(ε(G)) ≥

√
(d − 1)2 + d2 > d , a contradiction.
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Proof contd.

Case 2
Let G be a graph such that rad(G) = diam(G) = d . Then

B =

 0 d d
d 0 0
d 0 0


is a principal submatrix of ε(G), and ρ(B) = d

√
2. Therefore, by interlacing theorem, we have

ρ(ε(G)) ≥ d
√

2 > d , which is not possible.

Therefore, G is a diametrical graph.
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Bounds for ε-spectral radius

Corollary ( I Mahato, R Gurusamy, M Rajesh Kannan, and S Arockiaraj, [3] )
Among the connected bipartite graphs on 2n (n ≥ 3) vertices, the graph Wn,n has the minimum
ε-spectral radius, where Wn,n is the graph obtained by deleting n independent edges from the
complete bipartite graph Kn,n.

Proof.
Wn,n is a diametrical graph with diameter 3. So ρ(ε(Wn,n)) = 3.

Among the bipartite graphs on 2n vertices, K1,2n−1 and Kn,n are the only graphs of diameter
2.

ρ(ε(K1,2n−1)) = 2(n − 1) +
√

4n2 − 6n + 3 ≥ 3, and ρ(ε(Kn,n)) = 2(n − 1) ≥ 3.
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Bounds for ε-spectral radius

Theorem ( I Mahato, R Gurusamy, M Rajesh Kannan, and S Arockiaraj, [3] )
Let G be a connected graph on n vertices with eccentric Wiener index Wε.

Then ρ(ε(G)) ≥ 2Wε
n and the equality holds if and only if G is ε-regular graph.

If {ε(1), ε(2), . . . , ε(n)} is the ε-degree sequence of G, then

ρ(ε(G)) ≥ max
i

{ 1
n − 1

((
Wε − ε(i)

)
+

√(
Wε − ε(i)

)2
+ (n − 1)ε2(i)

)}
.

Proof.
The similar types of bounds for distance matrix of a connected graph G is known in the article
’Sharp bounds on the distance spectral radius and the distance energy of graphs’ by G Indulal [1],
and the idea of the proof is quite same.
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Construction of non ε-cospectral ε-equienergetic graphs

Theorem ( I Mahato, R Gurusamy, M Rajesh Kannan, and S Arockiaraj [3] )
For n ≥ 6 and p, q ≥ 2, the graphs Kp,n−p and Kq,n−q are ε-equienergetic, but not ε-cospectral .

Proof.

ε(Kp,q) =

[
2(Jp − Ip) 0

0 2(Jq − Iq)

]
.

specε(Kp,q) =

{
2(p − 1) 2(q − 1) −2

1 1 p + q − 2

}
Eε(Kp,q) = 4(p + q − 2).

Eε(Kp,n−p) = 4(p + n − p − 2) = 4(n − 2) = 4(q + n − q − 2) = Eε(Kq,n−q).
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Some open problems

Problem (Jianfeng Wang, Lu Lu, Milan Randic, and Guozheng Li, [8])
For each pair of integers (n, d) with n even, d ≥ 2 and n ≥ 4d − 4, can one give a construction for
the diametrical graphs with order n and diameter d ?

Problem (Jianfeng Wang, Mei Lu, Lu Lu, and Francesco Belardo, [10])
Which trees have the maximum ε-spectral radius ?

Problem (Jianfeng Wang, Mei Lu, Lu Lu, and Francesco Belardo, [10])
Determine the graphs with the least ε-eigenvalue ξn = −d, where d ≥ 3 is the diameter of the
graph.
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